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Meshless analysis of the substrate temperature in plasma spraying process
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Abstract

The substrate temperature plays a very important role in coating formation and its quality during the thermal spraying. Heating effect of the
plasma and particle flux on the substrate is explored in detail in terms of different spraying distances using the meshless local Petrov–Galerkin
method (MLPG). Based on this approach, a 3D transient heat transfer model is derived rigorously, in which the moving least-squares (MLS)
method is introduced to construct the shape functions. A quartic spline function is selected as the weight function of the MLS scheme and also the
test function for the discretized weak form, in which the penalty technique is used to treat the essential boundary conditions. For comparison, the
finite element method (FEM) is also adopted to solve the same problem. It is found that the computed temperature is in very good agreement with
the empirical data and better than that obtained using FEM, which validates the meshless formulation. Both numerical and experimental results
indicate that the spraying distance has a crucial influence on heating effect of the plasma jet and particle flux onto the substrate.
Crown Copyright © 2008 Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Plasma spraying process is basically the spraying of molten
or heat softened powder on a substrate surface to be rapidly
cooled for a coating [1]. It behaves a complex, dynamic and
multi-parameters property, which complicates the temperature
profile across the surface and through the substrate and coat-
ings [2,3]. Heating effect on the substrate or coating is mainly
attributed to the impinging plasma jet and the particle flux. In
the impact on a substrate surface, the particles are generally
deformed, rapidly cooled and solidified, and simultaneously
transfer the heating energy into the substrate [4,5]. Hot molten
or partially molten particles quench rapidly and flow and ad-
here better while impacting on a warm, dry surface with similar
physical property than a reverse one. Therefore, the substrate
temperature becomes a crucial factor especially when ceram-
ics is deposited onto metals under the generation of residual
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stresses, which decisively influences the formation and qual-
ity of coatings [6]. This probably results in the degradation,
oxidation, and shrinkage/expansion of the substrate, which in-
versely affects the properties of coatings [7,8]. In addition, due
to complex combinations of operating parameters and transient
high temperature gradient inside the particles and substrates,
experimental and mathematical characterizations of tempera-
ture and resulted gradient (temperature gradient, thermal strain
and stress) inter-relationships are actually of considerable diffi-
culty [9]. Numerical methods can rapidly explore the physical
behaviors at specific space and any time under arbitrary techno-
logical conditions.

As a well-developed numerical method, the finite element
method (FEM) has been widely applied to obtain numerical so-
lutions of various problems in engineering and science over the
past decades. Unfortunately, FEM has some inherent shortcom-
ings in relation with element distortion, meshing and remesh-
ing, etc. mainly due to the strong reliance on element meshes.
To avoid these drawbacks, meshless methods (also called mesh-
free methods) have been developed and remarkable progress
has been made. Attracting increasing research attentions in both
sson SAS. All rights reserved.
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Nomenclature

A moment matrix defined in Eq. (5) weak form
B matrix defined in Eq. (6)
C capacitance matrix in Eq. (19)
c specific heat coefficient . . . . . . . . . . . . J kg−1 ◦C−1

F load vector defined in Eq. (19)
h convection coefficient . . . . . . . . . . . . . W m−2 ◦C−1

K conduction matrix
k thermal conductivity . . . . . . . . . . . . . . W m−1 ◦C−1

l sequence number of test function
Le average nodal distance . . . . . . . . . . . . . . . . . . . . . . m
m node numbers for MLS approximation
N total filed node of problem domain
p basis function
Q internal heat source intensity . . . . . . . . . . . . W m−3

qΓ given heat flux on 2nd boundary . . . . . . . . . W m−2

R0 radial characteristic coefficient boundary
r radial distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
q̇, Ṫ temperature derivative with time . . . . . . . . . ◦C t−1

Ta,T0 ambient and initial temperature . . . . . . . . . . . . . . ◦C
TΓ given temperature on 1st boundary . . . . . . . . . . ◦C
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
v test function in the weak form

w MLS weight function
x rectangular coordinate (x, y, z)

Greek symbols

Φ shape function
Ωs local integration domain
φ heat source distribution . . . . . . . . . . . . . . . . . W m−2

φ0 axial value of heat flux . . . . . . . . . . . . . . . MW m−2

ρ material density . . . . . . . . . . . . . . . . . . . . . . . kg m−3

α penalty factor
�t stable time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
Γ1,Γ2,Γ3 three types of global boundaries
Γs1,Γs2,Γs3 three types of sub-boundaries

Subscripts

I , J nodal sequence number
n unit outward normal to boundary
s interpolation sub-domain
x, y, z components in x, y, z directions

Superscripts

T transpose operator
h function approximation
academia and engineering in recent years, meshless methods
have successfully attempted to solve various solid and fluid me-
chanics and heat transfer problems [10–12]. Among all these
meshless methods, the element-free Galerkin method (EFG)
[10] and the meshless local Petrov–Galerkin method (MLPG)
[11] are considered to be promising.

As for the thermal process of the plasma spraying, there
have been numerous publications concerning the numerical and
experimental studies on the heating of plasma jet and the coat-
ings/substrate, actually few papers published so far concentrate
on the confirmation by comparisons between numerical and
experimental measures of temperature and its gradient. The
present work attempts to utilize the novel MLPG to investi-
gate heating effect of the impinging plasma jet or particle flux
onto the substrate under different spraying distances. Computa-
tional results are compared with experimental results and those
obtained from FEM, which validate the meshless formulation.
This can help the full understandings of the coating elaboration
and the heat input prediction. The ultimate goal is to forecast
the stress and/or strain field during/after the spraying process
so that hot cracks can be alleviated to the most extent.

First, a meshless heat transfer model is established based on
the MLPG procedure. In order to evaluate reliability and accu-
racy, the scaling parameter of local quadrature domain and the
nodal distribution are studied in detail. In addition, experiments
of the plasma spraying and finite element analysis are also con-
ducted to confirm these results. Finally, temperature distribution
and evolution of the substrate are solved to evaluate the heating
effect of the plasma jet or particle flux under different spraying
distances.
2. Meshless mathematical model

2.1. Shape function construction

The moving least-squares (MLS) approximation is generally
considered to be one of the best schemes to interpolate data in
the problem domain with a desired accuracy, and therefore is
also adopted in the present procedure [13]. The unknown func-
tion T (x) is approximated by T h(x) at interested point x as:

T h(x) =
m∑

j=1

pj (x)aj (x) = pT(x)a(x) (1)

where the superscript T is the matrix transpose operator, and

xT = [ x, y, z ], pT = [ 1, x, y, z ]
(for complete order of m = 4) (2)

Note that the coefficient vector a(x) in Eq. (1) are functions
of space coordinates x. The coefficient aj (x) can be obtained
by minimizing the functional J :

J (x) =
n∑

i=1

w(x − xi )
[
pT(x)a(x) − Ti

]2 (3)

in which w(x−xi ) is a nonzero weight function, Ti is the nodal
temperature parameter, and n is the number of nodes in the local
support domain of the interested point x.

The stationary of functional J with respect to a(x) leads to:

a(x) = A−1(x)B(x)T (4)
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where T is the vector that collects the nodal parameters of tem-
perature field in the support domain, and A(x) is the called the
weighted moment matrix defined by:

A(x)m×m =
n∑

i=1

w(x − xi )p(xi )pT(xi ), (5)

B(x)m×n = [
w(x − x1)p(x1) w(x − x2)p(x2) . . .

w(x − xn)p(xn)
]

(6)

Substituting Eq. (4) back into Eq. (1), the MLS approxima-
tion is obtained as

T h(x) =
n∑

I=1

ΦI (x)TI = ΦT(x)T (7)

where ΦI (x) is the MLS shape function, which is defined as:

ΦI (x) =
m∑

j=1

pj (x)
[
A−1(x)B(x)

]
jI

= pTA−1BI (8)

and its first derivatives with respect space coordinates are

ΦI,x(x) = pT
,x · A−1 · BI + pT · (A−1),x · BI

+ pT · A−1 · (BI ),x (9)

It should be noted that the smoothness of the shape function
is mainly determined by the weight function w. The selection of
an appropriate weight function is crucial to the MLPG. It should
be nonzero over the local support of node I and constructed so
that a unique solution a(x) is guaranteed. More importantly, it
should decrease with the increase of the distance from x to xI .
In this paper, a quartic spline function [11] is adopted as the
MLS weight function at the interested point x:

w(x − xI ) ≡ w(rx)w(ry)w(rz) = wxwywz (10)

and its corresponding derivatives are expressed as:

w,x = dwx

dx
wywz, w,y = dwy

dy
wxwz

w,z = dwz

dz
wxwy (11)

2.2. Local symmetric weak form (LSWF)

Consider a temperature field in homogeneous and isotropic
solid Ω bounded by Γ as shown in Fig. 1. It is governed by
the following partial differential equation and a set of boundary
and initial conditions:

k∇2T (x) + Qv = ρcṪ Ω (12)

T = TΓ Γ1 (13)

−kT,n = qΓ Γ2 (14)

−kT,n = h[T − Ta] Γ3 (15)

T = T0 t = 0 (16)

where k is the conductivity, Ṫ is the temperature derivative with
respect to time, Qv is internal heat source, c is the specific heat,
ρ is the mass density, TΓ and qΓ are the given temperature and
Fig. 1. A problem domain and boundaries for the MLPG. The definition domain
Ωx covers all nodes whose weight functions are nonzero, the source point y is
the union of all Ωx , and the support of source point yi is a sub-domain in which
wi is nonzero.

heat flux, h is the convection coefficient, Ta and T0 are ambient
and initial temperature, and n is components of unit outward
normal to the boundary Γ .

To enforce the essential boundary conditions an effective
method of a penalty parameter α [12] is introduced into the
discretized form.

Thus a local unsymmetrical form can be written as below:∫
Ωs

(
k∇2T + Qv − ρcṪ

)
v dΩ − α

∫
Γs1

(T − TΓ )v dΓ = 0 (17)

Unlike the conventional Galerkin method where the trial and
test functions come from the same space, the MLPG introduces
the trial and test functions from different function spaces. Also
note that in the MLPG approach, the test function cannot vanish
on the boundary where the EBCs are specified [11].

Using integration by parts and Green’s theorem in Eq. (17)
yield the local symmetric weak form (LSWF) in isotropic and
homogenous solid and structures:∫
Ωs

kT,ivl,i dΩ + α

∫
Γs1

T vl dΓ −
∫

Γs1

kT,nvl dΓ

+
∫

Γs3

hT vl dΓ +
∫
Ωs

ρcṪ vl dΩ

=
∫

Γs3

hTavl dΓ −
∫

Γs2

qΓ vl dΓ

+ α

∫
Γs1

TΓ vl dΓ +
∫
Ωs

Qvvl dΩ (18)

where vl denotes the test function in the lth set. The LSWF only
requires that T and v are Co continuous, which means mathe-
matically that the approximation can produce a constant field
function exactly. This requirements can significantly reduce the
continuity of shape functions constructed using the MLS. To
obtain the discrete forms, the MLS weight function w is re-
ferred to as the test function vl in each local sub-domain, but
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having the smaller sub-domain. Substituting Eq. (7) into the
LSWF in Eq. (18) for N field nodes leads to the discretized
system equations:

[K]{q} + [C]{q̇} = {F} (19)

in which

KIJ =
∫
Ωs

k

(
∂ΦJ (x)

∂x

∂w(x, xI )

∂x
+ ∂ΦJ (x)

∂y

∂w(y, yI )

∂y

+ ∂ΦJ (x)

∂z

∂w(z, zI )

∂z

)
dΩ + α

∫
Γs1

ΦJ (x)w(x,xI )dΓ

−
∫

Γs1

k
∂ΦJ (x)

∂n
w(x,xI )dΓ +

∫
Γs3

hΦJ (x)w(x,xI )dΓ

CIJ =
∫
Ωs

ρcΦJ (x)w(x,xI )dΩ

FI =
∫

Γs3

hTaw(x,xI )dΓ −
∫

Γs2

qΓ w(x,xI )dΓ

+ α

∫
Γs1

TΓ w(x,xI )dΓ +
∫
Ωs

Qvw(x,xI )dΩ

and the vector of nodal temperature parameter is

q = [q1 q2 · · · qN ]T (20)

Using Crank–Nicolson difference technique for the time dis-
creteness, Eq. (19) can be rewritten as below:(

[K] + 2[C]
�t

)
{T}t

= ({F}t + {F}t−�t

) −
(

[K] − 2[C]
�t

)
{T}t−�t (21)

The stable time step �t can be determined [14] by

�t � Lermaxdmax/2 (22)

where dmax is the scaling parameter of local quadrature domain,
rmax is the second-farthest distance for the local sub-domain
and Le is the averaged nodal distance.

2.3. Problem modeling

Steady and transient heat conductions of one column sub-
strate with the radius 0.16 m and unit thickness are investigated
in detail. Ambient temperature 25 ◦C is prescribed at the sub-
strate edge. The specific heat and thermal conductivity of the
material are 460 J/kg ◦C and 10 W/m ◦C respectively, and ma-
terial density is 8200 kg/m3. For simplicity, a distributed heat
source is assumed to approximate the preheating effect of sub-
strate using the micro-plasma arc with the spraying distance of
0.08 m as

ϕ(r) = 10800/
[
1 + (1000r/11)2] (23)
Here the radial expansion coefficient 11 and axial value of
thermal flux 10800 W/m2 are derived from the experimental
evaluation.

Then the transient heat transfer analysis can be conducted
after the steady-state simulation under the same material and
initial-boundary conditions.

Previous works assumed that the thermal flux of the plasma
jet was approximated by substandard Gauss profile. However,
R. Bolot et al. [15] gave a general fitting of the thermal flux
transferred with respect to the spraying distance

ϕ(r) = ϕ0

1 + (r/R0)2
(24)

where φ0 is the axial value of the thermal flux, r is the radial
distance and R0 is a coefficient that characterizes the radial
expansion of plasma flux, which is related with the spraying
distance d and can be approximated as [15]:

R0 = 11(1000d/80)1.76 (25)

The axis flux φ0 can be evaluated through processing parame-
ters

ϕ0 = 0.228 + 5.57 · 10−10 · Fr0.052 · Ar−1.64 · d−2.55

· p1.33 · D−0.34 (26)

in which Fr is the plasma gas flow rate, Ar is the argon volume
fraction, d is the spraying distance, p is the electric power and
D is the torch diameter.

The initial temperature can be obtained based on the flux
distribution equation (23):

T (r, t)|t=0 = (25.0 + r), r ∈ [0,0.16] (27)

3. Experimental conditions

The electric power is 30 kW and the plasma jet length is
195 mm and assumed to deliver an overall efficiency of 52%.
For safety and cost, Ar and N2 are selected as the working gas,
and their flow rate are 20 and 10 slpm, respectively. The nozzle
and injection diameters are 0.008 and 0.0018 m, respectively.
The powder feeding rate is 0.076 g/s and the scanning speed
is 0.1 m/s. Besides, the powder carrier gas rate is 200 slpm.
The substrate is made of superalloy. The temperature detecting
device used in this study is the IR-pyrometer typed Thermalert
TX (Raytek Inc., USA) with a sampling rate 165 ms and a spot
diameter size 10 mm. The device only provides local thermal
information, and cannot cover the field of a large area without
special scanning mechanism or increasing the number of IR-
pyrometers. The numerical simulation can solve this situation
efficiently and economically.

The GP-80 equipment is used in experiments and the py-
rometer is fixed on the end arm of six-axis MOTOMAN-UP20
robot (RobotWorx, USA) and moves with the plasma torch.
This permits the pyrometer to enlarge the detecting scope and
its flexibility. During the detecting process, the pyrometer spot
is aimed at one point of the substrate, pre-setting the distance
0.01 m away from the torch centerline. It should be specially
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Fig. 2. Schematics of the plasma spraying with fixed point.

noted that the upper limit of the pyrometer is 300 ◦C . The mea-
sure detected is the temperature of substrate and that of the track
in coatings which would be deposited in succession. According
to our experiments, the spraying distance 100 mm is the best
suitable for good deposition and coating elaboration.

Fig. 2 is the view of the plasma spraying process. Generally,
the length of plasma jet is known as long as the experimental
parameters and device are selected. The following study will
focus on the variation of the spraying distance (d), which is
used to present the heating effect of the thermal flux. Also note
that the R0 and r shown in Fig. 2 is only for simple schematics
but not the accurate situation.

4. Numerical and experimental results

4.1. Steady state heat transfer

A robust in-house code based on FORTRAN is developed
for the problem. For comparison, ABAQUS is also used to com-
pute the temperature field of the substrate by a linear element
with two nodes on its two ends. Figs. 3 and 4 give the tem-
perature distribution along the radial direction from the present
MLPG, FEM and the analytical ones with the spraying dis-
tances of 0.1 and 0.08 m, respectively. The average errors of
MLPG and FEM to analytical solution are 0.241% and 4.99%,
respectively, which shows that MLPG exhibits higher accuracy
than FEM.

Table 1 shows the error and computational cost for different
scaling parameters (dmax) using four discretized models of 21,
41, 81 and 101 regularly distributed nodes.

Note that the parameters [12] (nd for the number of the
sub-partitions for numerical integration and αi for ith nodal in-
fluence domain) are taken as: nd = 2 and αi = 2.5.

It can be clearly seen that when 101 nodes are regularly dis-
tributed in the model, the relative errors are 0.28% and 2.61%
for MLPG and FEM, and the computational time are 7.08 and
4.79 s, respectively. It can also be found that the scaling pa-
rameter varied from 2.00 to 2.75 can give acceptable results for
Fig. 3. Comparisons of computed temperature distribution along the radial di-
rection for the MLPG, FEM and the analytical results with the spraying distance
of d = 0.1 m.

Fig. 4. Comparisons of computed temperature distribution along the radial di-
rection for the MLPG, FEM and the analytical results with the spraying distance
of d = 0.08 m.

quartic spline function. In addition, coupling computational ac-
curacy and cost are optimized when dmax is set to be 2.75. The
computational cost increases significantly with the increase of
the scaling parameter and the number of nodes. Similar to the
FEM, the ill nodal distribution in the MLPG may also cause
bigger error and decrease the efficiency.

Comparisons from Figs. 3 and 4 and Table 1 show that the
MLPG model for heat transfer is valid soundly. The conver-
gence of the MLPG is also better than that of the FEM. This
is because the MLS shape functions have higher order conti-
nuity. Also note that only the linear basis is used in the MLS
approximation in the analysis.

4.2. Unsteady state heat transfer

Since the arrangement of 21 nodes and the numerical param-
eters of dmax = 2.75, nd = 2 and αi = 2.5 are effective enough
to obtain very satisfactory results, the transient computation is
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Table 1
Relative error and computational cost with different scaling parameters and nodal distributions

Scaling 21 nodes 41 nodes 81 nodes 101 nodes

(dmax) Error (%) Time (s) Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

2.00 17.98 0.99 6.87 1.74 0.73 4.67 0.25 6.89
2.25 1.61 0.91 0.93 1.66 0.75 4.62 0.31 6.69
2.50 1.55 0.92 0.91 1.67 0.48 4.56 0.29 6.84
2.75 1.49 0.92 0.89 1.71 0.24 4.52 0.28 7.08
3.00 1.43 0.94 0.85 1.76 0.21 4.83 0.21 7.46
Fig. 5. Comparisons of computed temperature evolutions with the spraying dis-
tance of d = 0.1 m.

then carried out based on the steady-state analysis. The calcu-
lated temperature evolution of the interested point away from
the central region 0.01 m, together with FEM and experimental
results are plotted in Fig. 5.

According to Fig. 5, the temperature evolution of MLPG il-
lustrates the same trend as that of FEM, and also coincides with
experimental measures. The temperature value from the MLPG
is less than that from the FEM, suggesting that the accuracy of
the MLPG is bigger than that of the FEM in theory. Especially,
the beeline section in Fig. 5 indicates that the temperature has
exceeded the upper limit of the pyrometer. Thus, the numeri-
cal technique can forecast the information at any point and any
time under arbitrary conditions in the absence of experimental
measures. Finally, the whole field data is procurable only from
the computation.

For more information, Fig. 6 further gives the computed tem-
perature distributions of both the MLPG and the FEM with
the shorter spraying distance of 0.075 m. Note also that the
experimental data is not available due to exceeding the upper
temperature limit of the pyrometer. It is found that decreasing
the spraying distance leads to the rapid increase in temperature
of substrate. Together with experiments, the impinging plasma
jet actually gives the main contribution to heating the substrate.

These findings again validate the mathematical formulation
of heat transfer derived from the MLPG procedure. Moreover,
it can effectively analyze the transient heating effect in the sub-
strate during the plasma spraying without the experimental re-
sults, thus providing more valuable information in the plasma
spraying process.
Fig. 6. Comparisons of computed temperature evolutions with the spraying dis-
tance of d = 0.075 m.

4.3. Heating effect analysis

It is well known that the spraying distance is the most im-
portant factor for the final coating formation and quality in the
spraying process. It determines the maximum flux basically in-
cluding the plasma jet and the particle flux, and therefore has
an unassailable influence on the temperature evolution of the
substrate or coatings. Generally, the plasma jet provides more
contribution to the temperature raise when the spraying dis-
tance is less than or equal to the length of plasma jet. When
the spraying distance is bigger than the length of plasma jet,
the particle flux is mostly responsible for heating the substrate.
The contributions of the particle flux are presented in the fol-
lowing sections. Fig. 7 (a)–(c) gives the time history curves of
the substrate temperature under different spraying distances of
0.15, 0.20 and 0.25 m, respectively.

It can be seen from Figs. 5–7 that the numerical results ob-
tained from the MLPG are in good agreement with those from
the experiments. Specially, the substrate temperature decreases
significantly with the increasing of the spraying distance. This
is mainly due to reducing the impinging plasma jet onto the
substrate and the temperature will mainly depend on thermal
impact of the particle flux. In detail, the temperature of sub-
strate would reach the upper limit of the pyrometer only at the
time of 116 s when the spraying distance is 0.1 m, as shown in
Fig. 5. When the spraying distance is increased to be 0.15 m,
the final temperature arrives at 264.5 ◦C in three minutes, as
shown in Fig. 7(a). 207.6 ◦C can be obtained when d = 0.2 m
in three minutes as shown in Fig. 7(b). Fig. 7(c) shows that the
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(a)

(b)

(c)

Fig. 7. (a) Heating effect of the impinging plasma jet with the spraying distance
of d = 0.15 m. (b) Heating effect of the impinging plasma jet with the spraying
distance of d = 0.2 m. (c) Heating effect of the impinging plasma jet with the
spraying distance of d = 0.25 m.

substrate temperature is only 139.3 ◦C while the spraying dis-
tance is d = 0.25 m. Our experiments also show that the particle
flux is mainly responsible for the temperature evolution when
the plasma arc is gradually away from the substrate or coatings.
Therefore, it is very important for engineers to pursue the opti-
mal spraying distance for better heat transfer control.

In conclusion, both numerical and experimental results in-
dicate that the spraying distance has a crucial influence on the
heating effect of the impinging plasma jet or particle flux. The
temperature variation and distribution of the substrate deter-
mine the final coatings shape and performance. This will help
to select the suitable spraying distance to obtain the high quality
coatings.

During the steady- and unsteady-state numerical imple-
mentation, less troublesome efforts have to be made for data
preparation and additional post-processing, which certainly de-
creases the analysis cost of the MLPG.

5. Conclusions

A meshless formulation for heat transfer problems is de-
rived using the MLPG approach. The MLS scheme is used to
construct the shape functions. The penalty method is then intro-
duced to enforce the essential boundary conditions due to the
absence of delta function property of the MLS shape functions.
The quartic spline function used in the MLS scheme is also cho-
sen as the test function in obtaining the weak form. Numerical
results show that MLPG can be applied to solve heat transfer of
the substrate in the plasma spraying, and several remarks can
be made as follows:

1. The optimal dmax = 2.75 selected in this paper and the
quartic spline weight function are valid to improve the ac-
curacy, convergence and reliability.

2. Compared with FEM, the MLPG can achieve accuracy and
less data preparation required, therefore reducing the anal-
ysis cost significantly.

3. The spraying distance has a strong influence on heating ef-
fect of the plasma jet or particle flux onto the substrate or
coatings. Together with the length of plasma jet, it is very
helpful and crucial to select the optimal spraying distance
for better coating conformability and quality.
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